Multi-Satellite Diversity through the Use of OTFS

Stefano Buzzi¹, Giuseppe Caire², Giulio Colavolpe³, Carmen D'Andrea¹, Tommaso Foggi³, Amina Piemontese³, Alessandro Ugolini³

 1 University of Cassino and Southern Latium, Italy 2 Technical University of Berlin, Germany 3 University of Parma, Italy

Stresa, 21 October 2022

- 1. Introduction
- 2. System model
- 3. Orthogonal Time Frequency Space (OTFS) Modulation
- 4. Detection Strategies
- 5. Numerical Results
- 6. Conclusions

- 1. Introduction
- System mode
- 3. Orthogonal Time Frequency Space (OTFS) Modulation
- 4. Detection Strategies
- Numerical Results
- 6. Conclusions

- ► **LEO satellites** offer an effective way to ensure **global coverage** in B5G non-terrestrial networks
- We consider the use of multiple LEO satellites to improve the spectral efficiency and increase the robustness and reliability of the communication link
- Diversity can ensure significant gains, but it poses different challenges
- Signals received at UTs will have different delays, phases, and Doppler shifts
- ▶ **OFDM** does not appear to be an ideal choice in this scenario
- We propose the use of OTFS, specifically designed for terrestrial time varying channels

The use of OTFS in non-terrestrial networks has not been considered yet

- 1. Introduction
- 2. System model
- 3. Orthogonal Time Frequency Space (OTFS) Modulation
- 4. Detection Strategies
- 5. Numerical Results
- 6. Conclusions

- Two LEO satellites
- The same signal is transmitted
- UT on the ground

- Different distance from the UT
- lacksquare Different **delays** $\{ au_p\}_{p=1}^2$
- ▶ Different **Doppler shifts** $\{\nu_p\}_{p=1}^2$

- 1. Introduction
- 2. System mode
- 3. Orthogonal Time Frequency Space (OTFS) Modulation
- 4. Detection Strategies
- Numerical Results
- 6. Conclusions

OTFS can be described as follows

- Symbols $\{x[k,l]\}$, $k=0,1,\ldots,N-1$, $l=0,1,\ldots,M-1$, belonging to any modulation format (e.g., QAM or PSK), are arranged in an $N\times M$ grid in the Doppler-delay domain, spaced by $\frac{1}{NT}$ and $\frac{1}{M\Delta f}$
- ightharpoonup T and Δf are selected such that

$$\max_p \tau_p < T \,, \quad \max_p \nu_p < \Delta f$$

Orthogonal Time Frequency Space (OTFS) (2/3)

Information symbols are converted into a block of samples $\{X[n,m]\}$ in the time-frequency domain through the **2-D inverse symplectic finite Fourier transform (ISFFT)**

$$X[n,m] = \frac{1}{\sqrt{NM}} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x[k,l] e^{j2\pi \left(\frac{nk}{N} - \frac{ml}{M}\right)}$$

 \blacktriangleright The internal dashed rectangle is nothing else than a legacy OFDM system: in fact, the Heisemberg Transform gives the transmitted signal (N OFDM words with M subcarriers)

$$s\left(t\right) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} X\left[n,m\right] g_{\mathrm{tx}}(t-nT) e^{j2\pi m\Delta ft}$$

- The cyclic prefix is not necessary (a guard interval of N symbols in the time domain is usually inserted). We will assume $\Delta fT=1$
- Received signal

$$r(t) = \sum_{p=1}^{P} h_p s(t - \tau_p) e^{j2\pi\nu_p t}$$

- \blacktriangleright Samples $Y\left[n,m\right]$ at the output of a bank of MFs for t=nT and $f=m\Delta f$
- ▶ Doppler-delay received samples: $Y\left[n,m\right] \stackrel{\mathsf{SFFT}}{\longrightarrow} y\left[k,l\right]$

- 1. Introduction
- 2. System mode
- Orthogonal Time Frequency Space (OTFS) Modulation
- 4. Detection Strategies
- Numerical Results
- 6. Conclusions

- Input-output expression $y=\Psi x+w$: general model for linear channels
 - The same model holds for: SC modulations with ISI, OFDM with ICI, MIMO systems, CDMA systems, storage systems with 2D ISI
- Many solutions are available in the literature. In this work, we consider
 - LMMSE estimator (complexity $\mathcal{O}\left(N^3M^3\right)$):

$$\hat{m{x}}_{\mathsf{LMMSE}} = m{\Psi}^{\mathsf{H}} \left(m{\Psi}m{\Psi}^{\mathsf{H}} + \sigma_w^2m{I}
ight)^{-1}m{y}$$

■ FG/SPA-based detector. Defining $z \triangleq \Psi^H y$ and $G \triangleq \Psi^H \Psi$, we can develop a message-passing (MP) algorithm with complexity linear in the number of non-zero elements of matrix G

- 1. Introduction
- 2. System mode
- 3. Orthogonal Time Frequency Space (OTFS) Modulation
- 4. Detection Strategies
- 5. Numerical Results
- 6. Conclusions

System parameters

First scenario		
Orbital parameters	Satellite 1	Satellite 2
Semi-major axis [m]	7616400	7576300
Eccentricity	0.0011	0.0013
Inclination [°]	87.9888	87.8240
Right Ascension of Ascending Node [°]	114.1692	307.5095
Argument of Periapsis [°]	42.6046	42.7865
True Anomaly [°]	295.8847	42.1175
Period [s]	6615.1	6563
Second scenario)	
Orbital parameters	Satellite 1	Satellite 2
Semi-major axis [m]	7594800	7592600
Eccentricity	0.0015	0.0015
Inclination [°]	87.9854	87.9857
Right Ascension of Ascending Node [°]	114.9085	115.0746
Argument of Periapsis [°]	75.4521	65.3493
True Anomaly [°]	343.6983	64.7552
Period [s]	6586.9	6584.1

- Two scenarios: comparable and unbalanced channel gains
- Oneweb constellation
- Carrier frequency 5 GHz
- Bandwidth 2 MHz
- M = 128, N = 50
- Subcarrier spacing 15.65 kHz
- ightharpoonup Symbol time $66.6~\mu \mathrm{s}$
- QPSK modulation

The two satellites can perfectly **compensate for delay** at one **reference point** on the surface of the Earth

Comparable channels, reference point

- Comparable channels
- Reference point
- ▶ MP $_G$ and P=2 ensure a significant gain w.r.t. P=1
- Smaller gains with MMSE

Comparable channels, different positions

- Comparable channels
- ightharpoonup P = 2
- Different positions
- The proposed solution is robust to offset variations
 - $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} The two paths are in both cases different points on the $M \times N$ grid \\ \hline \end{tabular}$

Comparable channels, shadowing

- Comparable channels
- Reference point
- 5% shadowing probability for each path
- Diversity allows a more robust and reliable link

Unbalanced channels, reference point

- Unbalanced channels
- Reference point
- $ightharpoonup \operatorname{MP}_G$ and P=2 ensure a good gain w.r.t. P=1
- especially when the second satellite is used

Unbalanced channels, shadowing

- Unbalaned channels
- Reference point
- ► 5% shadowing probability for each path
- Diversity allows a more robust and reliable link

- 1. Introduction
- 2. System mode
- Orthogonal Time Frequency Space (OTFS) Modulation
- 4. Detection Strategies
- Numerical Results
- 6. Conclusions

- We investigated diversity techniques in multiple satellite systems exploiting OTFS
- ► The proposed system ensures
 - robustness to delay and Doppler shifts thanks to the properties of OTFS
 - higher reliability thanks to the use of diversity
 - higher achievable information rates with respect to a single satellite
 - easy compatibility with OFDM systems

THANK YOU

Alessandro Ugolini, PhD
SPADiC Lab
Dept. of Engineering and Architecture
University of Parma
alessandro.ugolini@unipr.it

www.unipr.it

▶ Received samples after SFFT (in the absence of noise):

$$y[k,l] = \sum_{p=1}^{P} \sum_{k'=0}^{N-1} \sum_{l'=0}^{M-1} \underbrace{h_p e^{j2\pi\nu_p\tau_p}}_{h'_p} \mathbf{\Psi}^p[k,k',l,l'] x[k',l']$$

y[k,l] depends on more symbols x[k',l'] \Rightarrow **Doppler-delay ISI** \Rightarrow symbol-by-symbol detection is suboptimal

▶ When $g_{tx}(t)$ is a rectangular pulse of support T

$$\begin{split} \boldsymbol{\Psi}^{p}\left[k,k',l,l'\right] &\simeq \frac{1}{NM} \frac{1 - e^{j2\pi\left(k' - k + \nu_{p}NT\right)}}{1 - e^{j2\pi\frac{\left(k' - k + \nu_{p}NT\right)}{N}}} \frac{1 - e^{j2\pi\left(l' - l + \tau_{p}M\Delta f\right)}}{1 - e^{j2\pi\frac{\left(l' - l + \tau_{p}M\Delta f\right)}{M}}} \\ &\cdot e^{j2\pi\nu_{p}\frac{l'}{M\Delta f}} \left\{ \begin{array}{cc} 1 & \text{if } l' \in \left[0, M - 1 - \left\lceil\frac{\tau_{p}}{(T/M)}\right\rceil\right] \\ e^{-j2\pi\left(\frac{k'}{N} + \nu_{p}T\right)} & \text{if } l' \in \left[M - \left\lceil\frac{\tau_{p}}{(T/M)}\right\rceil, M - 1\right] \end{array} \right. \end{split}$$

OTFS: input-output expression (2/3)

Dirichlet kernel functions:

$$\left|\frac{1-e^{j2\pi\left(k'-k+\nu_pNT\right)}}{1-e^{j2\pi\frac{\left(k'-k+\nu_pNT\right)}{N}}}\cdot\frac{1-e^{j2\pi\left(l'-l+\tau_pM\Delta f\right)}}{1-e^{j2\pi\frac{\left(l'-l+\tau_pM\Delta f\right)}{M}}}\right|=$$

When P=1

- Every symbol is shifted by the same quantity \propto to the Doppler-delay pair associated to the reflector $h(\nu, \tau) = h_1 \delta(\tau \tau_1) \delta(\nu \nu_1)$
- ► Leakage in the adjacent positions ⇒ Doppler-delay ISI

When P > 1

We have P different shifts (P is typically small) $h(\nu, \tau) = \sum_{n=1}^{P} h_n \delta(\tau - \tau_n) \delta(\nu - \nu_p)$

Writing the $N \times M$ matrices of transmitted symbols and received samples as NM-dimensional column vectors (stacking the columns of the corresponding matrices on top of each other), we obtain the block-wise input-output relation as

$$oldsymbol{y} = \underbrace{\left(\sum_{p=1}^P h_p' oldsymbol{\Psi}_p
ight)}_{oldsymbol{\Psi}} oldsymbol{x} + oldsymbol{w}$$

where Ψ_p is the $NM \times NM$ matrix obtained from $\Psi^p[k,k',l,l']$ while w denotes the AWGN with zero mean and covariance $\sigma^2_w \mathbf{I}_{NM}$.

Dirichlet kernel functions

▶ Dirichlet kernel functions:

$$\left|\frac{1-e^{j2\pi\left(k'-k+\nu_pNT\right)}}{1-e^{j2\pi\frac{\left(k'-k+\nu_pNT\right)}{N}}}\cdot\frac{1-e^{j2\pi\left(l'-l+\tau_pM\Delta f\right)}}{1-e^{j2\pi\frac{\left(l'-l+\tau_pM\Delta f\right)}{M}}}\right|=$$

